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Abstract—This paper presents a new recursive filter to 

joint input and state estimation for noisy discrete time 

Takagi-Sugeno (T-S) fuzzy models. For each local linear 

model one local filter is designed using Kalman filter 

theory. Steady state and unknown input solutions can be 

found for each of the local filters. The global filter is a 

linear combination of linear filters. The local filter is time 

invariant, which greatly reduces the computational 

complexity of the global filter. The global filter is optimal 

in the sense of the unbiased minimum variance (UMV) 

criteria.   

Index Terms—TS fuzzy model, State and unknown input 

estimation, nonlinear dynamic systems, minimum-variance.  

I. INTRODUCTION  

The simultaneous estimation of the state and the unknown 

inputs (UI) of a system has received much research attention 

ever since the original works[ 1, 2, 3, 4, 6, 17, 18, 19, 20, 21]  

and is a key problem in many engineering applications due to 

the practical and/or economical problems arising when 

measuring signals of a process.  

A robust state estimation with respect to UI plays therefore a 

fundamental role in numerous system control and/or 

supervision strategies. With regard to this last purpose, an UI 

can generally be employed in order to modelling an actuator 

failure and/or an abnormal behaviour of an internal component 

of the system. 

Clearly, the state and the UI estimations can be employed for 

providing fault symptoms of the systems in order to make the 

system more reliable and safe. 

Nonlinear filtering problems arise in many practical 

applications, e.g., financial estimation, biological and 

industrial processes, target localization and tracking, robots 

and robotic manipulators, and traffic state estimation. As is 

well known, a general approach to solve these problems is 

generalizing the Kalman filter paradigm for nonlinear systems, 

e.g., the extended Kalman filter (EKF). It is noted that the 

EKF is a first-order filter that propagates only the mean and 

covariance of the filtering densities, which however may 

diverge or provide poor state estimates due to its inherent first-

order Taylor approximation of the nonlinear model. Other 

efforts to improve on the EKF have been developed, e.g., the 

DD2 filter [7], the unscented Kalman filter (UKF) [8], the 

derivative-free version of the EKF [9], the Gaussian particle 

filter (GPF) [10], the cubature Kalman filters (CKF) [11], and 

the derivativefree estimation method [12]. As addressed in [9], 

all the above filters attempt to improve the EKF by 

representing state uncertainty with a different ensemble set of 

state vectors. To the best of the author’s knowledge, all the 

above-mentioned nonlinear estimator design methods are not 

yet applied to UIF problem for nonlinear stochastic systems. A 

heuristic approach of applying the aforementioned filters to 

solve the UIF problem of nonlinear stochastic systems is 

to augment the system state with the unknown inputs, and then 

apply the dedicated filtering method to the obtained 

augmented system. Notice that in this approach the unknown 

input model is always needed and assumed beforehand; as 

shown in the previous works [13]-[15], this approach may not 

perform well for arbitrary unknown inputs. A possible 

solution to remedy this problem is to propose ERTSF-like 

recursive algorithms that can optimally estimate the system 

state in light of arbitrary unknown input values [13]-[15]. 

However, it should be stressed that all these unknown-input 

decoupled nonlinear estimators (UIDNEs) are derived based 

on a direct application and extension of the ERTSF [5], which 

in general may only yield a specific linear combination of the 

unknown input vector.  

In other words, only the estimable unknown input estimates 

from the measured outputs are provided and the remaining 

unestimable unknown input estimates are ignored. On the 

other hand, few research results concern simultaneous state 

and input estimation for nonlinear systems [16], which only 

considered linear measurement and limited system 

nonlinearity. Thus, the state estimation problem of applying 
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the UIF method for general nonlinear stochastic systems still 

remains open. 

In this paper, we extend the previous works [5] and continue 

the research line in investigating the applications of the UIF 

method to solve the addressed state estimation problem of 

nonlinear stochastic systems with unknown inputs. 

The paper is organized as follows. In Section 2, the statement 

of the problem is addressed and the problems encountered. In 

Section 3, the fuzzy Kalman filter is presented. The proposed 

filter is presented in section 4. Illustrations of applying the 

proposed framework through an example is given in Section 4 

to show the usefulness of the proposed results. Finally, 

conclusions are highlighted in the last section. 

II. PROBLEM FORMULATION 

Nonlinear systems can be approximated as locally linear 

systems in much the same way non-linear function can be 

approximated as piecewise linear function. Nonlinear systems 

can be represented by fuzzy linear models of the following 

form    

If ( )1z k  is 1iF  and  ...   ( )gz k  is igF  then 

( ) ( ) ( ) ( ) ( )1 i i ix k A x k B u k G d k w k+ = + + +                       (1)                        

( ) ( ) ( ) ( ) ( )( ), 1,...,i iy k C x k H d k v k i L= + + =                  (2) 

This is referred to as a Takagi-Sugeno (T-S) fuzzy model. The 

jz  are premise variables, k  is the time index, ijF  are fuzzy 

sets, ( ) n
x k ∈ℜ is the state vector, ( ) p

u k ℜ  is the 

deterministic input, ( ) m
d k ℜ  is the unknown input vector and 

( ) r
y k ∈ℜ is the measurement vector. The process noise 

( ) n
w k ∈ℜ  and the measurement noise ( ) p

v k ∈ℜ are 

assumed to be mutually uncorrelated zeros-mean white 

random signals with nonsingular covariance matrices 

( ) 0
T

k k kQ w w= ≥  and ( ) 0
T

k k kR E v v= > . Each of the local 

models of  (1) and  (2)  is a linear time invariant model. The 

fuzzy combination of these local models results in the global 

model: 

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

1
L

i i i i

i

x k h z k A x k B u k G d k w k

=

+ = + + +∑ (3)                   

( ) ( )( ) ( ) ( ) ( )( )
1

L

i i i

i

y k h z k C x k H d k v k

=

= + +∑                   (4) 

Where ( )( )ih z k the membership grades are defined as: 

( )( )
( )( )
( )

i

i

z k
h z k

k

µ

µ
=                                                              (5) 

( )( ) ( )( )
1

i

g

ij j

j

z k F z kµ

=

= =∏                                                 (6) 

( ) ( )( )
1

L

i

i

k z kµ µ

=

=∑                                                               (7) 

( ) ( ) ( )1 , ..., gz k z k z k =   
                                                      (8) 

( )( )ij jF z k  is the membership grade of ( )jz k  in ijF . Note 

that ( )( ) [ ]0,1ih z k ∈ .From (3) and (5) we can see that:  

( )( )
1

1
L

i

i

h z k

=

=∑                                                                      (9) 

From (2) we can derive: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1x k A k x k B k u k G k d k w k+ = + + +      (10)                                              

( ) ( ) ( ) ( ) ( ) ( )y k C k x k H k d k v k= + +                             (11) 

where ( )A k , ( )B k , ( )G k , ( )C k  and ( )H k  are given as :  

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1 1

, ,

,

L L

i i i i

i i

L L

i i i i

i i

A k h z k A B k h z k B

G k h z k G C k h z k C

= =

= =

= =

= =

∑ ∑

∑ ∑

( ) ( )( )
1

L

i i

i

H k h z k H

=

=∑                                                       (12)                         

The global model is a fuzzy combination of L  Local linear 

time - invariant models, can be represented as a time -varying 

model. If the premise variable ( )z k are function of the state or 

control, then the model is nonlinear . however, if the premise 

variable are independent of the state and control, then the 

model is linear. Now we define L   discrete time 

signals ( )ix k , ( )id k  and ( )iy k  as : 

( ) ( )( ) ( )i ix k h z k x k= ,            ( ) ( )( ) ( )i id k h z k d k=  

( ) ( )( ) ( )i iy k h z k y k= ,          ( ) ( )
1

L

i

i

x k x k

=

=∑                   (13)             

( ) ( )
1

L

i

i

d k d k

=

=∑ ,                    ( ) ( )
1

L

i

i

y k y k

=

=∑                 (14) 

The dynamic of  the ( )ix k  and ( )iy k  signals is presented in 

the following form: 
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( ) ( ) ( ) ( )( ) ( )1i i i i i i ix k A x k G d k h z k B u k+ = + +                            

                     ( )( ) ( )ih z k w k+                                               (15)  

( ) ( ) ( ) ( )( ) ( )i i i i i iy k C x k H d k h z k v k= + +                        (16) 

 

III. FUZZY KALMAN FILTER  

 

In this section we present a Kalman filter for each local 

systems given by in the following form   

( ) ( )( ) ( ) ( ) ( )( )
1

1
L

i i i

i

x k h z k A x k B u k w k

=

+ = + +∑               (17)                             

( ) ( )( ) ( ) ( )
1

L

i i

i

y k h z k C x k v k

=

 = + ∑                                    (18) 

For a nonlinear dynamic systems that is described by the T-S 

fuzzy model, a FKF can be designed to estimate the systems 

state vector .  

A local linear filter can be designed for each local linear 

dynamic model using Kalman theory. At an operating point, 

the local filter is associated with each fuzzy rule as given 

below  

If ( )1z k  is 1iF  and  ...   ( )gz k  is igF  then  

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ/ / 1 / 1i i i i i ix k k x k k K k y k C x k k= − + − −    (19)                     

( ) ( ) ( )( ) ( )ˆ ˆ1/ /i i i i ix k k A x k k h z k B u k+ = +                     (20)                            

The Kalman gain matrix ( )iK k  in equation (19) can be 

calculated from the following set of equations: 

( ) ( )( )
1

1
/

i

T
i i i iR k C P k k C R

−− = +�                      (21) 

( ) ( ) ( )1/
i

T
i i iK k P k k C R k−= �                              (22) 

( ) ( )( ) ( )/ / 1i i iP k k I K k C P k k= − −                           (23) 

( ) ( ) ( ) ( )1/ / /T T
i i i i i i i i i iP k k A P k k A A K k C P k k A Q+ = − +  (24)       

where ( )/ 1iP k k−  and ( )/iP k k are the covariance matrices 

of errors in predicted and update state estimates of the ith local 

filter, respectively. The overall state estimation is a nonlinear 

combination of individual local filter outputs. The overal filter 

dynamics will then be a weighted sum of individual linear 

filters, given by 

  ( ) ( )
1

ˆ ˆ/ 1/
L

i

i

x k k x k k

=

= +∑                                             (25) 

( ) ( )( ) ( ) ( )( )
1

ˆ ˆ1/ /
L

i i i i

i

x k k h z k A x k k B u k

=

+ = +∑               (26)                    

IV. STATE AND UNKNOWN INPUT ESTIMATION  

Consider the systems given in the following form:  

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

1
L

i i i i

i

x k h z k A x k B u k G d k w k

=

+ = + + +∑  (27)                  

( ) ( )( ) ( ) ( ) ( )( )
1

L

i i i

i

y k h z k C x k H d k v k

=

= + +∑                   (28)                

This section deals with UIF estimation problem, based on the 

coupled multiple model (27) and (28),  using the ERTSF (5) . 

The filter given in the three step: 

-  Estimation of the unknown input,  

- The measurement update 

- Time update 

These three steps are given by: 

• Estimation of the unknown input,  

( ) ( )( )/ 1x T
i i i i iR k C P k k C R= − +�                                       (29)  

  ( ) ( ) ( ) ( )( )ˆ ˆ / 1i i i i id k M k y k C x k k= − −                             (30)                                 

( ) ( )( ) ( )
1

1 1T T
i i i i i iM k H R k H H R k

−− −= � �                             (31)                                    

( ) ( )( )
1

1d T
i i k iP k H R k H

−−=                                                (32)                                             

• Measurement update 

( ) ( ) ( )1/ 1x T
i i i iK k P k k C R k−= − �                                     (33)                             

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ/ / 1 / 1i i i i i ix k k x k k K k y k C x k k= − + − −                

( )ˆ
i iH d k−                                                                             (34) 

( ) ( ) ( )

( ) ( )( ) ( )

/ / 1x
i i i

d T T
i i i i i

P k k P k k K k

R k H P k H K k

= − −

× −�
                          (35) 

• Time update 

( ) ( ) ( )( ) ( )

( )( ) ( )

ˆ ˆ1/ /

ˆ

i i i i i

i i i

x k k A x k k h z k B u k

h z k G d k

+ = +

+
                    (36)             
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( ) [ ]
( ) ( )

( ) ( )

/
1 /

x xd T
i i ix

i i i kdx d T
i i i

P k k P k A
P k k A G Q

P k P k G

   
   + = +
     

  (37)        

The overal filter dynamics will then be a weighted sum of 

individual linear filters, given by 

( ) ( )
1

ˆ ˆ1/ 1/
L

i

i

x k k x k k

=

+ = +∑                                          (38)                                       

( ) ( )( ) ( ) ( ) ( )( )
1

ˆˆ ˆ1/ /
L

i i i i i

i

x k k h z k A x k k B u k G d k

=

+ = + +∑    (39)               

V. SIMULATION EXAMPLE 

To show the proposed result, we consider the following  for 

submodels of a coupled multiple mode  where the parameters 

are given by: 

2

144.034 58.896
1

170.981
29.859

ref ref

ref

v v
A

v

 
 − −
 
 =  
 

− 
  

, 

52.802

40.939

refvB

 
 
 =  
 
  

 

2

62.463
152.756

0 1

refvC

 
 −
 =  
 
  

, 
56

0
D
 
 =
 
 

 

In order to obtain the TS fuzzy model it is necessary to define 

two premise variables. These are 

( )1
1

ref

z t
v

= ,       ( )2 2

1

ref

z t
v

=  

Now, the matrices A , B  and C  can be defined in the 

following form: 

( ) 1 2

1

144.034 58.896 1

29.859 170.981

z z
A z

z

 − −
 =
 − 

, ( ) 152.802

40.939

z
B z

 
 =
 
 

, 

( ) 1152.756 62.463

0 1

z
C z

 −
 =
 
 

 

The calculation of the minimum and maximum values of  

( )1z t  and ( )2z t  for [ ]5 55 /refv m s=  are: 

        1 1max 0.2z z
+= =          2 2max 0.04z z

+= =  

1 1min 0.018z z
−= =      4

2 2min 3.305z z e
− −= =  

From the maximum and minimum values of ( )1z t  and ( )2z t  

the membership function are calculated as follows   

( ) 1 1
11 1

11

z z
F z

z z

−
+

+ −

−
=

−
         ( ) 11

12 1

11

z z
F z

z z

+
−

+ −

−
=

−
 

( ) 2 2
21 2

22

z z
F z

z z

−
+

+ −

−
=

−
     ( ) 22

22 2

22

z z
F z

z z

+
−

+ −

−
=

−
 

After the discretization of each subsystem, using 10 ms as 

simple time, the vehicle dynamic model is given by the 

deffuzzifiation as: 

( ) ( )( ) ( ) ( ) ( )( )
4

1

1 i i i

i

x k h z k A x k B u k w k

=

+ = + +∑

( ) ( )( ) ( ) ( )( )
4

1

i i

i

y k h z k C x k v k

=

= +∑  

where 

( )( ) ( )( ) ( )( )1 11 21h z k F z k F z k= ×  

( )( ) ( )( ) ( )( )2 11 22h z k F z k F z k= ×  

( )( ) ( )( ) ( )( )3 12 21h z k F z k F z k= ×  

( )( ) ( )( ) ( )( )4 12 22h z k F z k F z k= ×  

1

0.7512 0.0099

0.2181 0.7118
A

 
 =
 
 

, 

2

0.7486 -0.0072

0.2178 0.7093
A

 
 =
 
 

3

0.9761 0.0132

0.2904 0.9714
A

 
 =
 
 

,

4

0.9727 -0.0095

0.2900 0.9680
A

 
 =
 
 

1

0.0941

0.3598
B

 
 =
 
 

,  2

0.0901

0.3594
B

 
 =
 
 

, 

3

0.0122

0.4048
B

 
 =
 
 

, 4

0.0075

0.4043
B

 
 =
 
 

, 

56

0
D
 
 =
 
 

1 2

152.7568 12.4926

0 1
C C

 −
 = =
 
 

,   , 

3 4

152.7568 1.1357

0 1
C C

 −
 = =
 
 
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0.5 0

0 0.1
R
 
 =
 
 

, 
0.9 0

0 0.1
Q
 
 =
 
 
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Figure 1: Weighting functions 
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Figure2: State and its estimate 
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Figure 5. Unknown input and its estimate 
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Figure 3. Trace of covariance Px 
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            Figure4 : Trace of covariance Pd 

 

Table 1: Evaluation of the RMSE values 

Rmse x1             Rmse x2                

Rmsef1  
TraceP

x
  Trace P

d 
   

0.2398                0.1798            0.0024  4.6188 0.3002 

 
  

VI. . CONCLUSION 

In this present paper, an extension of ERTSF is presented for 

estimating the state variables and the unknown inputs of nonlinear 

stochastic systems modelled by a coupled multiple model. The 

suggested filter can be used, as an extension of the classic Kalman 

filter scheme, in the detection and the isolation of sensor and actuator 

failures. 
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